FUNCIONES

Los glúcidos desempeñan con carácter general en los seres vivos dos tipos de funciones: energéticas y estructurales.

Función energética

La oxidación de los glúcidos libera energía que las células pueden utilizar para realizar sus funciones. La glucosa es el azúcar que con más frecuencia utilizan las células como combustible metabólico primario. Por otra parte, algunos polisacáridos actúan como material de reserva energética que puede ser rápidamente movilizado cuando es necesario. Una ventaja que poseen los glúcidos sobre otras biomoléculas como material energético es que, dada la solubilidad en agua de muchos de ellos, pueden ser transportados muy rápidamente en medio acuoso allí donde resultan necesarios.

Función estructural

Algunos polisacáridos como la celulosa o la quitina presentan propiedades que los hacen idóneos para formar parte de estructuras que deben ofrecer una gran resistencia mecánica, como las paredes celulares vegetales o el exoesqueleto de los artrópodos.

HETERÓSIDOS

Están formados por monosacáridos y otros componentes de naturaleza no azucarada. Ente ellos cabe citar a los glucolípidos, y a las glucoproteínas, que son asociaciones covalentes de cadenas oligosacarídicas con lípidos y proteínas respectivamente; los glucolípidos y glucoproteínas están presentes en muchos lugares de la célula, sobre todo en la cara externa de la membrana plasmática. Un tipo especial de heterósido es el peptidoglucano, componente esencial de las paredes celulares bacterianas, que está constituido por cadenas paralelas de un heteropolisacárido en el que se alternan unidades de N-acetil-glucosamina y de ácido N-acetil-murámico (dos derivados de la glucosa) unidas transversalmente por cadenas de aminoácidos unidos mediante enlaces peptídicos.

POLISACÁRIDOS

Los polisacáridos son glúcidos formados por un número elevado de monosacáridos unidos entre sí mediante enlaces glucosídicos. En el proceso de unión de n monosacáridos para formar un polisacárido se liberan (n-1) moléculas de agua, una por cada enlace glucosídico. Aunque el límite entre oligosacáridos y polisacáridos se suele fijar arbitrariamente en 10 unidades monosacarídicas constituyentes, lo cierto es que la mayoría de los polisacáridos naturales están formados por centenares o miles de estas unidades monoméricas.

Los polisacáridos son macromoléculas de elevado peso molecular y estructura compleja. Así como otras macromoléculas tienen tamaños y pesos moleculares definidos, en los polisacáridos éstos pueden variar en función del estado metabólico de la célula. Se puede considerar que los monosacáridos son los sillares estructurales de los polisacáridos, al igual que los aminoácidos lo son de las proteínas o los nucleótidos de los ácidos nucleicos. Las propiedades físicas y químicas de los polisacáridos son en cierto modo contrarias a las que exhiben monosacáridos y oligosacáridos: no cristalizan, no tienen sabor dulce, carecen de poder reductor, y, aunque son sustancias hidrofílicas, son poco soluble en agua debido a su elevado peso molecular.

Los distintos tipos de polisacáridos difieren entre sí en el tipo de unidades monosacarídicas que los forman, en el tipo de enlace glucosídico (α o β) que las une, y en el mayor o menor grado de ramificación que presentan sus cadenas. Se distinguen dos tipos principales de polisacáridos, los homopolisacáridos, formados por un sólo tipo de monosacárido, y heteropolisacáridos, formados por dos o más tipos de monosacáridos.

Estructura y la función de los tres glucanos más importantes:

ALMIDÓN

Es un polisacárido formado por moléculas de α-D-glucosa unidas por enlaces glucosídicos α(1—› 4) y α(1—›6). En la molécula de almidón se distinguen dos tipos de polímero:

Amilosa

Polímero no ramificado formado por largas cadenas por varios centenares de unidades de α-D-glucosa unidas por enlaces α-(1—›4). Estas cadenas adoptan una disposición helicoidal con 6 moléculas por vuelta, y tienen masas moleculares relativas que oscilan entre unos pocos miles y 500.000 daltons (Figura 7.12).

Amilopectina

Polímero muy ramificado (Figura 7.13) formado por moléculas de α-D-glucosa. Los sucesivos restos de glucosa a lo largo de las cadenas están unidos por enlaces α(1—›4), y los puntos de ramificación, que se encuentran espaciados por un número de restos de glucosa que oscila entre 24 y 30, consisten en enlaces α(1—›6) (ver Figura 7.13). Su masa molecular relativa puede alcanzar hasta un millón de daltons.

El almidón actúa como sustancia de reserva en las células vegetales. Una parte sustancial de los glúcidos producidos en la fotosíntesis se almacenan en forma de almidón, dando lugar a unos agregados insolubles de gran tamaño, los granos de almidón, que se encuentran en todas las células vegetales, siendo especialmente abundantes en las de las semillas, frutos y tubérculos.

GLUCÓGENO

Polisacárido con estructura muy similar a la de la amilopectina . Al igual que ésta, está formado por moléculas de α-D-glucosa unidas por enlaces glucosídicos α(1—›4) a lo largo de las cadenas, y con puntos de ramificación consistentes en enlaces α(1—›6)(Figura 7.14). La diferencia con respecto a la amilopectina estriba en que las ramificaciones se encuentran menos espaciadas, concretamente cada 8 a 12 restos de glucosa. Esta mayor proximidad entre los puntos de ramificación hace que el glucógeno sea mucho más compacto que el almidón, pudiendo alcanzar pesos moleculares del orden de varios millones de daltons. Las moléculas de glucógeno presentan un núcleo de naturaleza proteica consistente en una molécula de glucogenina, una proteína enzimática que cataliza la unión glucosídica de las primeras moléculas de glucosa, que quedan covalentemente ancladas a la propia proteína formando un núcleo alrededor del cual van creciendo y ramificándose las cadenas del glucógeno mediante la acción del enzima glucógeno sintetasa. Cuando las células recurren a sus reservas de almidón o de glucógeno, determinados enzimas van liberando una a una moléculas de glucosa, en forma de derivados fosforilados, las cuales pueden después ser utilizadas como combustible metabólico.

Los polisacáridos, dada la gran rapidez con que pueden ser movilizados, constituyen una excelente forma de almacenar energía metabólica a corto plazo. Puede resultar sorprendente que las células almacenen su combustible energético en forma de polisacáridos cuando podrían hacerlo en forma de glucosa libre evitándose así el trabajo químico de sintetizarlos y degradarlos. La razón de que ello sea así estriba en que los polisacáridos se almacenan en forma esencialmente insoluble, contribuyendo muy poco a la presión osmótica del citoplasma. Una cantidad equivalente de glucosa disuelta generaría una presión osmótica muy elevada que podría ser peligrosa para la célula.

CELULOSA

Es un polímero lineal (no ramificado) formado por moléculas de β-D-glucosa unidas mediante enlaces glucosídicos β(1—›4) (Figura 7.16). Cada cadena de celulosa contiene entre 10.000 y 15.000 restos de glucosa. Estas cadenas, debido a la configuración β de sus enlaces glucosídicos, adoptan conformaciones muy extendidas que favorecen la formación de puentes de hidrógeno entre los grupos hidroxilo de los distintos restos de glucosa de una misma cadena o de cadenas vecinas (Figura 7.17). De este modo se forman fibras supramoleculares que contienen muchas cadenas individuales de celulosa en disposición paralela e íntimamente unidas entre sí por puentes de hidrógeno. Tal estructura es la que confiere a la celulosa su insolubilidad en agua y su resistencia mecánica características, propiedades estas que la hacen idónea para desempeñar en las células una función de carácter estructural. La celulosa es el principal componente de las paredes celulares vegetales, las cuales proporcionan a las células de las plantas y las algas sostén mecánico y protección frente a los fenómenos osmóticos desfavorables. Una gran parte de la masa de la madera es celulosa.

 

EL ENLACE GLUCOSÍDICO

Los monosacáridos capaces de formar anillos de piranosa o furanosa, en tanto que hemiacetales o hemicetales intramoleculares, pueden reaccionar con los alcoholes para formar glucósidos liberándose en el proceso una molécula de agua.

El enlace glucosídico resulta de la formación de un acetal (o cetal) entre el carbono carbonílico de un monosacárido y un grupo hidroxilo de otro monosacárido. Este segundo monosacárido posee otro carbono carbonílico libre que a su vez puede reaccionar con un grupo hidroxilo de un tercer monosacárido para formar otro enlace glucosídico, y así sucesivamente. De este modo, mediante sucesivos enlaces glucosídicos, se puede unir un número ilimitado de monosacáridos para formar largas cadenas que pueden ser lineales o ramificadas. En todos los ósidos, azúcares formados por un número variable de monosacáridos unidos entre sí, la unión entre los mismos se realiza mediante este tipo de enlace.

El enlace glucosídico puede ser de dos tipos, α o β, según sea α o β la configuración del monosacárido que aporta al enlace el átomo de carbono carbonílico. Por otra parte, se distinguen enlaces glucosídicos monocarbonílicos, en los que sólo está implicado el carbono carbonílico de un monosacárido, y enlaces glucosídicos dicarbonílicos, en los que están implicados los carbonos carbonílicos de los dos monosacáridos enlazados.

La estructura de un enlace glucosídico se suele especificar escribiendo el tipo de enlace, α o β, seguido entre paréntesis por los números de los átomos de carbono implicados en él; el número que se escribe en primer lugar corresponde al átomo de carbono carbonílico. Algunos ejemplos son α(1—›4), α(1—›6), β(1—›4), β(1—›2), etc.

OLIGOSACÁRIDOS

Los ósidos, glúcidos formados por la unión de varios monosacáridos, pueden ser holósidos, si están formados exclusivamente por monosacáridos, o heterósidos, si además contienen otros componentes de naturaleza no azucarada. Entre los holósidos se distinguen, en función del número de unidades que los forman, dos tipos: oligosacáridos y polisacáridos.

Los oligosacáridos son holósidos compuestos por un número reducido de unidades monosacarídicas unidas mediante enlaces glucosídicos. Si están formados por sólo dos monosacáridos se denominan disacáridos, si lo están por tres trisacáridos; a los que están formados por más de tres monosacáridos no se le suele asignar ninguna denominación específica y se suelen nombrar sencillamente como oligosacáridos.

Sus propiedades físicas son muy similares a las de los monosacáridos: también son sólidos cristalinos, de color blanco, sabor dulce y solubles en agua. La mayoría de ellos conserva el poder reductor característico de los monosacáridos. Este poder reductor reside en los átomos de carbono carbonílicos y se pierde cuando éstos participan en un enlace glucosídico. Por ello, cuando dos monosacáridos se unen mediante un enlace glucosídico monocarbonílico el disacárido resultante tendrá poder reductor, ya que conserva un carbono carbonílico libre. Por el contrario, si el enlace es dicarbonílico el disacárido resultante, al tener sus dos carbonos carbonílicos implicados en el enlace, habrá perdido el poder reductor. En general, los oligosacáridos, independientemente de su longitud, tendrán poder reductor siempre que conserven algún carbono carbonílico libre en uno de sus extremos, que se denomina extremo reductor.

Los oligosacáridos más abundantes y de mayor importancia biológica son los disacáridos: maltosa, isomaltosa, celobiosa, lactosa, trehalosa y sacarosa.

En cuanto a los trisacáridos, relativamente escasos en la naturaleza, cabe citar algunos como la rafinosa y la melicitosa que se encuentran en la savia de determinadas plantas.

DERIVADOS DE LOS MONOSACÁRIDOS

Además de los monosacáridos simples, existe en la naturaleza una serie de derivados de los mismos que tienen una gran importancia biológica, sobre todo los derivados de algunas aldohexosas como la glucosa, manosa y galactosa. Estos derivados se obtienen por sustitución de alguno de los grupos hidroxilo por algún otro grupo funcional, o bien por oxidación o reducción de alguno de los átomos de carbono del monosacárido original.

1) Aminoazúcares: en ellos el grupo hidroxilo unido al carbono 2 del monosacárido de origen está sustituido por un grupo amino. Así sucede por ejemplo en la glucosamina, manosamina y galactosamina.

2) Azúcares-alcoholes: se obtienen por reducción del grupo carbonilo a grupo hidroxilo, de manera que en ellos todos los átomos de carbono están unidos a grupos hidroxilo. Entre los azúcares-alcoholes destaca la glicerina, un polialcohol de tres átomos de carbono que se encuentra formando parte de muchos lípidos.

3) Azúcares-ácidos: se obtienen por oxidación de algún átomo de carbono del monosacárido de origen a grupo carboxilo. Si el carbono oxidado es el carbono carbonílico se obtienen los ácidos aldónicos; si es el carbono hidroxílico del otro extremo de la cadena se obtienen los ácidos urónicos. Entre los azúcares-ácidos destacan los derivados de la glucosa denominados ácido glucónico y ácido galacturónico.

4) Desoxiazúcares: alguno de los grupos hidroxilo del monosacárido de origen está sustituido por un átomo de hidrógeno. El más importante es la 2´-desoxirribosa, que forma parte de los ácidos nucleicos.

5) Azúcares-fosfato: son azúcares fosforilados (unidos a un grupo fosfato mediante enlace éster) en alguno de sus grupos hidroxilo. En la síntesis y degradación de los glúcidos, los compuestos intermedios no suelen ser los propios azúcares sino sus derivados fosforilados. Ello se debe a que estos derivados poseen cargas netas a pH 7, lo que evita su difusión a través de las membranas celulares.

6) Glucósidos: los hemiacetales y hemicetales pueden reaccionar con una segunda molécula de alcohol para, liberando una molécula de agua, dar lugar a acetales y cetales respectivament.

MONOSACÁRIDOS

Los monosacáridos son los azúcares más sencillos, no pueden descomponerse por hidrólisis para dar lugar a otros azúcares más simples. En la naturaleza se encuentran en estado libre, desempeñando importantes funciones, pero también se encuentran formando parte de otros azúcares más complejos, los ósidos, de los cuales son sus sillares estructurales.

ESTRUCTURA

La estructura básica de todos los monosacáridos es una cadena de átomos de carbono no ramificada en la que todos ellos están unidos por enlaces simples. Uno de estos átomos de carbono está unido a uno de oxígeno por un enlace doble formando un grupo carbonilo; todos los demás están unidos a grupos hidroxilo. Si el grupo carbonilo se encuentra en un extremo de la cadena carbonada el monosacárido es un aldehído y recibe el nombre de aldosa. Si el grupo carbonilo se encuentra en cualquier otra posición el monosacárido es una cetona y recibe el nombre de cetosa.

Los monosacáridos naturales tienen entre tres y ocho átomos de carbono, aunque los de siete y ocho son relativamente raros. Según tengan 3, 4, 5, 6… carbonos se denominan respectivamente triosas, tetrosas, pentosas, hexosas…. Existen aldosas y cetosas para cada una de estas longitudes de cadena.

Los monosacáridos son compuestos sólidos, cristalinos, de color blanco, solubles en agua y de característico sabor dulce. Entre sus propiedades químicas destaca su poder para reducir el licor de Fehling, siendo esta reacción de gran utilidad para identificarlos experimentalmente.

GLÚCIDOS

Los glúcidos, también llamados azúcares o sacáridos, son un grupo de biomoléculas orgánicas muy abundante en la naturaleza. La celulosa, principal componente de la madera, es de naturaleza glucídica, quizás sea la biomolécula más abundante en la biosfera.

Los glúcidos se definen desde el punto de vista químico como polihidroxialdehídos o polihidroxicetonas, o bien sustancias que por hidrólisis dan lugar a este tipo de compuestos. Los polihidroxialdehídos son compuestos orgánicos en los que todos los átomos de carbono están unidos a un grupo hidroxilo excepto uno de ellos que forma parte de un grupo aldehído, mientras que las polihidroxicetonas son compuestos orgánicos en los que todos los átomos de carbono están unidos a un grupo hidroxilo excepto uno que forma parte de un grupo cetona

Existen dos clases principales de glúcidos:

a) Monosacáridos: también llamados osas. Son azúcares simples, no hidrolizables, que consisten en una sola unidad de polihidroxialdehído o polihidroxicetona. Se clasifican a su vez en aldosas y cetosas.

b) Ósidos: son azúcares complejos que, cuando sufren hidrólisis, liberan monosacáridos. Están formados por un número variable de monosacáridos unidos covalentemente entre sí. Algunos ósidos se componen exclusivamente de monosacáridos y se denominan holósidos, mientras que otros contienen además otros componentes de naturaleza no glucídica y se denominan heterósidos.

 

 

ARN (ácido ribonucleico)

Generalmente tiene una sola cadena. El nucleótido de una cadena de ARN tendrá ribosa, una de las cuatro bases nitrogenadas (A, U, G y C), y un grupo fosfato. Hay cuatro tipos principales de ARN: el ARN mensajero (ARNm), el ARN ribosomal (ARNr), el ARN de transferencia (tRNA) y los ARN regulatorios.

ARN mensajero (ARNm)

Intermediario entre un gen que codifica proteína y su producto proteico. Si una célula necesita hacer una proteína en particular, el gen que codifica la proteína se «activará», lo que significa que una enzima ARN polimerizante vendrá y hará una copia de ARN, o transcrito, de la secuencia de ADN del gen. El transcrito contiene la misma información que la secuencia de ADN de su gen. Sin embargo, en la molécula de ARN, la base T se sustituye por U. 
Una vez que se ha producido un ARNm, este se asociará con un ribosoma, que se especializa en la fabricación de proteínas a partir de aminoácidos. El ribosoma utiliza la información del ARNm para hacer una proteína con una secuencia específica cuando «lee» los nucleótidos del ARNm en grupos de tres (codones) y añade un aminoácido en particular para cada codón.

ARN ribosomal (ARNr) y ARN de transferencia (ARNt)

El ARN ribosomal (ARNr) es uno de los principales componentes del ribosoma y ayuda a que el ARNm se una al sitio adecuado para que se pueda leer la información de su secuencia. Algunos ARNr también actúan como enzimas (ribozimas), es decir, ayudan a acelerar (catalizar) reacciones químicas.
Los ARN de transferencia (ARNt) también participan en la síntesis de proteínas; llevan aminoácidos al ribosoma para asegurar que el aminoácido que se agrega a la cadena es el que especifica el ARNm. Los ARNt se componen de una sola cadena de ARN que contiene segmentos complementarios que se unen entre sí para formar regiones de doble cadena.

ARN regulatorios (miRNA y siRNA)

Algunos tipos de ARN no codificante ayudan a regular la expresión de otros genes. Por ejemplo, los microARN (miRNA) y los ARN pequeños de interferencia, o siRNAs, son pequeñas moléculas de ARN regulatorio de aproximadamente 22 nucleótidos de largo. Se unen a moléculas de ARNm específicas y reducen su estabilidad o interfieren con su traducción y así proporcionan a la célula una manera de reducir o ajustar finamente la concentración de estos ARNm.

ADN (ácido desoxirribonucleico)

El ADN es el material genético de los organismos vivos. Su función es la de trasmitir la información genética de padres a hijos.

  • En eucariontes (plantas y animales) el ADN se encuentra en el núcleo, así como en ciertos tipos de organelos (mitocondrias y los cloroplastos de las plantas). Se suele separar en fragmentos lineales muy largos, cromosomas, que pueden contener decenas de miles de genes, y cada uno proporciona instrucciones sobre cómo hacer un producto particular necesario para la célula.
  • En procariontes (bacterias) el ADN se encuentra en una región especializada de la célula llamada nucleoide. Los cromosomas son mucho más pequeños que en eucariontes, y a menudo circulares (en forma de anillo).